Browse Publications Technical Papers 2018-01-0315
2018-04-03

Economic and Efficient Hybrid Vehicle Fuel Economy and Emissions Modeling Using an Artificial Neural Network 2018-01-0315

High accuracy hybrid vehicle fuel consumption (FC) and emissions models used in practice today are the product of years of research, are physics based, and bear a large computational cost. However, it may be possible to replace these models with a non-physics based, higher accuracy, and computationally efficient versions. In this research, an alternative method is developed by training and testing a time series artificial neural network (ANN) using real world, on-road data for a hydraulic hybrid truck to predict instantaneous FC and emissions. Parameters affecting model fidelity were investigated including the number of neurons in the hidden layer, specific training inputs, dataset length, and hybrid system status. The results show that the ANN model was computationally faster and predicted FC within a mean absolute error of 0-0.1%. For emissions prediction the ANN model had a mean absolute error of 0-3% across CO2, CO, and NOx aggregate predicted concentrations. Overall, these results indicate that ANN models could be used for a variety of research applications due to their economic and computational benefits such as derivation of vehicle control strategies to reduce FC and emissions in modern vehicles.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimal Control Inputs for Fuel Economy and Emissions of a Series Hybrid Electric Vehicle

2015-01-1221

View Details

TECHNICAL PAPER

Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation

2016-01-0662

View Details

JOURNAL ARTICLE

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-01-1303

View Details

X