Browse Publications Technical Papers 2018-01-0433

Modeling and Validation of 48 V Mild Hybrid Lithium-Ion Battery Pack 2018-01-0433

As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of the 48 V mild hybrid technology for reducing CO2 emissions from light-duty vehicles. Simulation and modeling of this technology requires a suitable model of the battery. This paper presents the development and validation of a 48 V lithium-ion battery model that will be integrated into EPA’s ALPHA vehicle simulation model and that can also be used within Gamma Technologies, LLC (Westmont, IL) GT-DRIVE™ vehicle simulations. The battery model is a standard equivalent circuit model with two-time constant resistance-capacitance (RC) blocks. Resistances and capacitances were calculated using test data from an 8 Ah, 0.4 kWh, 48 V (nominal) lithium-ion battery obtained from a Tier 1 automotive supplier, A123 Systems, and developed specifically for 48 V mild hybrid vehicle applications. The A123 Systems battery has 14 pouch-type lithium ion cells arranged in a 14 series and 1 parallel (14S1P) configuration. The RC battery model was validated using battery test data generated by a hardware-in-the-loop (HIL) system that simulated the impact of mild hybrid electric vehicle (MHEV) operation on the A123 systems 48 V battery pack over U.S. regulatory drive cycles. The HIL system matched charge and discharge data originally generated by Argonne National Laboratory (ANL) during chassis dynamometer testing of a 2013 Chevy Malibu Eco 115 V mild hybrid electric vehicle. All validation testing was performed at the Battery Test Facility (BTF) at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (NVFEL) in Ann Arbor, Michigan. The simulated battery voltages, currents, and state of charge (SOC) of the HIL tests were in good agreement with vehicle test data over a number of different drive cycles and excellent agreement was achieved between RC model simulations of the 48 V battery and HIL battery test data.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.