Browse Publications Technical Papers 2018-01-0599
2018-04-03

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field 2018-01-0599

Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible. Afterwards, the polynomial trajectory planning method was matched up with this lane-changing decision-making method and simulations based on Matlab/Simulink were finally conducted to verify the method presented in this article. As the simulation results showed, adopting the lane-changing decision-making method based on acceleration field, the lane-changing measurements such as starting position, span and driving speed can be optimized with driver’s habits involved. At the same time, the vehicle safety can be well ensured.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Analysis and Computer Simulation of Driver/Vehicle Interaction

871086

View Details

TECHNICAL PAPER

Development of a Nighttime Pedestrian Recognition Assistance System

2006-01-0461

View Details

TECHNICAL PAPER

Vehicle Ride Quality - Measurement and Analysis

861113

View Details

X