Browse Publications Technical Papers 2018-01-0655

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection 2018-01-0655

In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition. Heat release analysis reveals ethanol had the highest maximum cylinder pressure at the earliest crank angle, followed by E90W10 and then gasoline, because of their relative earlier combustion phasing (CA10 and CA50) and short combustion duration. This is confirmed by the faster developing flame fronts of ethanol fuels shown by the high speed combustion and OH* images. The difference in the flame radius among anhydrous, wet ethanol fuels and gasoline decreased when a fuel lean mixture was used. With the rich fuel/air mixture, the flame’s edges of all fuels became more wrinkled compared with that of stoichiometric and lean conditions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Spectroscopic Investigation of Initial Combustion Stages in a SI Engine Fuelled with Ethanol and Gasoline


View Details


Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems


View Details


Ignition Delay Model Parameterization Using Single-Cylinder Engines Data


View Details