Browse Publications Technical Papers 2018-01-0765
2018-04-03

Simulation of Arc Quenching in Hermetically Sealed Electric Vehicle Relays 2018-01-0765

The goal of this work is to investigate arc quenching in electric vehicle relays using high-fidelity computational modeling. Rapid arc quenching is an essential quality of state-of-the-art high-voltage mechanical relays in electric vehicles. As a relay begins to break electrical contact, strong arcing can occur. This delays the process of sending a signal to the primary circuit breaker to isolate the load from a sudden current surge. The strength and duration of the arc have a significant impact on the safety of electric vehicles as well as on relay contactor erosion/lifetime. A thermal plasma modeling tool is used to estimate switch-off time in an arc relay using hydrogen and air as working gases. The response of arc dynamics and switch-off time to the gas composition, external magnetic field strength, and chamber pressure is studied. It was observed that a hermetically sealed chamber filled with hydrogen is significantly more efficient than air at quenching the arc. A stronger magnetic field was seen to enhance arc stretch to the wall which rapidly quenches the arc. Further, decreasing gas pressure inside the chamber yielded an increase in the time taken for the arc to quench.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-01-0417

View Details

STANDARD

Electric Vehicle (E-Vehicle) Crash Test Lab Safety Guidelines

J3040_201512

View Details

TECHNICAL PAPER

Operation of a Hydrogen-Powered Hybrid Electric Bus

981923

View Details

X