Browse Publications Technical Papers 2018-01-0858
2018-04-03

Statistical Analysis of Knock Intensity Probability Distribution and Development of 0-D Predictive Knock Model for a SI TC Engine 2018-01-0858

Knock is a non-deterministic phenomenon and its intensity is typically defined by a non-symmetrical distribution, under fixed operating conditions. A statistical approach is therefore the correct way to study knock features. Typically, intrinsically deterministic knock models need to artificially introduce Cycle-to-Cycle Variation (CCV) of relevant combustion parameters, or of cycle initial conditions, to generate different knock intensity values for a given operating condition. Their output is limited to the percentage of knocking cycles, once the user imposes an arbitrary knock intensity threshold to define the correlation between the number of knocking events and the Spark Advance (SA).
In the first part of the paper, a statistical analysis of knock intensity is carried out: for different values of SA, the probability distributions of an experimental Knock Index (KI) are self-compared, and the characteristics of some percentiles are highlighted.
The innovative contribution of this work is to correlate such KI probability curves with mean combustion parameters (like maximum in-cylinder pressure or combustion phase) through an analytical function. In this way, KI distributions can be predicted by a fully deterministic combustion model, ignoring CCV. In the final part of the paper such relations are implemented in a 1-D environment and tested using a combustion model, previously calibrated via Three Pressure Analysis (TPA) for knock-free operating conditions. Validation is carried out by comparing experimental and simulated KI distributions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

3D Modelling of Combustion and Pollutants in a 4-Valve SI Engine; Effect of Fuel and Residuals Distribution and Spark Location

961964

View Details

TECHNICAL PAPER

Experiences from Nanoparticle Research on Four Gasoline Cars

2015-01-1079

View Details

TECHNICAL PAPER

Measurement of Temperature Distribution Nearby Flame Quenching Zone by Real-Time Holographic Interferometry

2004-01-1761

View Details

X