Browse Publications Technical Papers 2018-01-0960
2018-04-03

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System 2018-01-0960

Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems. The purpose of current study is to introduce the Computational Fluid Dynamics (CFD) approach to predict urea deposit formation in the Isuzu exhaust system using detailed urea decomposition mechanism. Conjugate Heat Transfer (CHT) is used along with the advanced splashing and film evaporation models to correctly predict the film temperature. Detailed decomposition mechanism approach with a modified multi component evaporation model was used to capture the urea deposit production process. The results were compared against engine dyno test data for mass accumulation prediction and gas-chromatograph (GC) - QTOFMS results for urea deposit chemical component prediction.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-01-0343

View Details

TECHNICAL PAPER

Experimental Study and Numerical Interpretation on the Temperature Field of DPF during Active Regeneration with Hydrocarbon Injection

2018-01-1257

View Details

TECHNICAL PAPER

Development of a Passive Exhaust Gas Cooler for Diesel Vehicles Using CFD

2009-01-0966

View Details

X