Browse Publications Technical Papers 2018-01-1316

Virtual Occupant Model with Active Joint Torque Control for Muscular Reflex 2018-01-1316

Riding comfort on the seat is one of the important factors for vehicle comfort. To analyze riding comfort, there were some models for predicting human vibrations in the past studies. On the other hand, it is strongly affected by human body motion caused by vehicle excitation during driving especially low frequency, but it is difficult to predict human motion due to an unclear mechanism of muscle reflex. The purpose of this study is to construct virtual riding comfort testing simulation based on virtual prototyping of the seat. In this study, a virtual occupant model that predicts occupant motion on the seat against external excitation including muscle reflex for maintaining sitting posture constructed. The whole body was modeled as 15 segments biomechanical model (1D) with wobbling mass. Each joint has passive elastic torque and damping torque springs. Human body surface was modeled as rigid shape. The muscle reflex modeled as active joint torque with PID control for maintaining posture. Intrinsic, such as elastic spring forces that connect wobbling mass in the abdominal cavity, and extrinsic parameters, such as active torque control gain, were determined by 2 step optimization process for fit measured data for calibrating. Whole body model and seat FE model (3D) with excitation calculated at the same time to make it possible to predict human body motion on the seat. As the results of validations, simulated results were well agreed with measurement data of subjects on the conditions of translational excitations. And, further development issues and visions were discussed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Study and proposals for improving static comfort in automotive seating


View Details


Predicting the Head-Neck Posture and Muscle Force of the Driver Based on the Combination of Biomechanics with Multibody Dynamics


View Details


The Effects of Anthropometry on Driver Position and Clearance Measures


View Details