Browse Publications Technical Papers 2018-01-1609
2018-08-07

Road Sign Recognition System Based on Wavelet Transform and OPSA point Set Distance 2018-01-1609

Abstract: Signage recognition is one of the hot topics in recent years. It has important applications in intelligent traffic and autonomous driving of smart cars. This paper designs a road marking recognition method combining OPSA point set distance and wavelet transform. The method consists of three main phases: 1) image denoising, restora-tion, 2) feature extraction, and 3) image recognition. First, a Gauss-ian-smoothing filter used to attenuate or remove irrelevant information in the image, enhance related information in the image, and achieve image denoising. In the feature extraction stage, the feature extraction and recognition method based on wavelet transform adopted to overcome the deficiency of the traditional Fourier feature extraction method, ensure that high frequency information is not lost, and low frequency information is not lost. Finally, the OSPA point set used to identify distance markers. Compared with the standard image, the experimental results show that this method can overcome the weather change, Gaussian white noise caused by illumination changes, and the slight rotation of the collected landmark image, the scale change and the noise caused by the translation. This method realizes the accurate recognition of road signs, has strong fault tolerance and robustness, and has certain guiding significance for the research of assisted driving systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 43% off list price.
Login to see discount.
Special Offer: Purchase more aerospace standards and aerospace material specifications and save! AeroPaks off a customized subscription plan that lets you pay for just the documents that you need, when you need them.
X