Browse Publications Technical Papers 2018-01-1621
2018-08-07

Targets Location for Automotive Radar Based on Compressed Sensing in Spatial Domain 2018-01-1621

Millimeter wave automotive radar is one of the most important sensors in the Advanced Driver Assistance System (ADAS) and autonomous driving system, which detects the target vehicles around the ego vehicle via processing transmitted and echo signals. However, the sampling rate of classical radar signal processing methods based on Nyquist sampling theorem is too high and the resolution of range, velocity and azimuth can’t meet the requirement of highly autonomous driving, especially azimuth. In spatial domain, targets are sparse distribution in the detection range of automotive radar. To solve these problems, the algorithm for targets location based on compressed sensing for automotive radar is proposed in this paper. Besides, the feasibility of the algorithm is verified through the simulation experiments of traffic scene. The range-doppler-azimuth model can be used to estimate the distance, velocity and azimuth of the target accurately. Compared with the classical radar algorithm, it can improve the distance resolution and distinguish adjacent targets. In terms of angle estimation, compared with MUSIC (Multiple Signal Classification) algorithm, the snapshot required for the compressed sensing is less, and it can achieve better angle resolution.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

2-D CFAR Procedure of Multiple Target Detection for Automotive Radar

07-11-01-0007

View Details

TECHNICAL PAPER

Driving Course Prediction Using Distance Sensor Data

1999-01-1234

View Details

TECHNICAL PAPER

Application of Collision Probability Estimation to Calibration of Advanced Driver Assistance Systems

2019-01-1133

View Details

X