Browse Publications Technical Papers 2018-01-1776
2018-09-10

Experimental Determination of the Heat Transfer Coefficient in Piston Cooling Galleries 2018-01-1776

Piston cooling galleries are critical for the pistons’ capability to handle increasing power density while maintaining the same level of durability. However, piston cooling also accounts for a considerable amount of heat rejection and parasitic losses. Knowing the distribution of the heat transfer coefficient (HTC) inside the cooling gallery could enable new designs which ensure effective cooling of areas decisive for durability while minimizing parasitic losses and overall heat rejection. In this study, an inverse heat transfer method is presented to determine the spatial HTC distribution inside the cooling gallery based on surface temperature measurements with an infrared (IR) camera. The method utilizes a piston specially machined so it only has a thin sheet of material of a known thickness left between the cooling gallery and the piston bowl. The piston - initially at room temperature - is heated up with warm oil injected into the cooling gallery. The transient of the piston’s outer surface temperature is captured with an IR camera from the top. Combining the temperature transient of each pixel, the HTC is later obtained through an inverse heat transfer solver based on one-dimensional heat conduction inside the piston material. To the authors’ knowledge, the current study presents the first application of an inverse heat transfer method for spatially resolved and experimentally determined heat transfer coefficients inside a piston cooling gallery. Preliminary measurements at standstill to demonstrate the method display an area of increased heat transfer where the entering oil jet impinges onto the wall of the cooling gallery.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Effect of Shear Rate Dependent Thermal Conductivity on Heat Transfer to Industrial Fluids in Heat Exchanger Ducts

980433

View Details

TECHNICAL PAPER

Cell Design for Ceramic Monoliths for Catalytic Converter Application

881685

View Details

JOURNAL ARTICLE

A New Piston Insulation Concept for Heavy-Duty Diesel Engines to Reduce Heat Loss from the Wall

2017-24-0161

View Details

X