Browse Publications Technical Papers 2018-01-1799
2018-09-10

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture 2018-01-1799

When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process.
In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time. From the results, it was confirmed that the ignition timing can be advance and retard depending on the temperature-pressure history regardless of the time for the fuel to stay in the cylinder. This indicates that ignition delay can be controlled arbitrarily according to the purpose by manipulating the temperature-pressure history. In addition, zero-dimensional detailed chemical reaction calculation was carried out in order to discuss the effect of the spatial heterogeneity of fuel mixture concentration and temperature on the ignition delay. The results showed that the heterogeneity of the air-fuel mixture essentially shortens the ignition delay time.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Study of Mixture Inhomogeneities and Combustion Development in a S.I. Engine Using a New Approach of Laser Induced Fluorescence (FARLIF)

961205

View Details

TECHNICAL PAPER

Impact of Bore-to-Stroke Ratio Over Light-Duty DI Diesel Engine Performance, Emissions and Fuel Consumption: An Analytical Study Using 1D-CFD Coupled with DOE Methodology

2013-24-0013

View Details

TECHNICAL PAPER

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-01-0257

View Details

X