Browse Publications Technical Papers 2018-01-1867
2018-10-05

Cementitious-Based Brake Pads Technology: Performance, Low Energy Consumption, Emission Drop 2018-01-1867

Brake pads employing innovative hydraulic inorganic binders in place of common state-of-the-art thermosetting phenolic resins have been produced by means of a unique prototypal equipment and a distinctive manufacturing process. The unicity of the process enables us to exclude completely any thermal cycle in the manufacturing steps, with a considerable positive energy balance compared to the standard counterpart. Realized brake pads have indeed been successfully tuned to meet the braking performances of phenolic counterparts. In the present work our latest efforts in this field are illustrated, focusing our attention to three main areas of interest: performance, energy consumption, volatile organic emissions. One selected exponent of our cementitious-based material is reported, demonstrating its capability of matching both standard OE and AM braking performances (investigated through a full scale brake dynamometer by SAE J2522 procedure), and its feasibility to be released as an actual AM material according to ECE R90 regulation (road test on vehicle). The energetic evaluation of the employed technology in term of prototypal manufacturing process and employed raw materials has been established, demonstrating the advantages of this new system compared to the standard one. Our investigation finally reports selected thermo-chemical analysis (TG-EGA and pyrolysis PY-GC/MS) devoted at identifying the key organic compounds potentially/eventually emitted during braking at various temperatures. Our material shows a dramatic drop of the volatile hazardous/organic compounds (VHCs/VOCs) released by a standard phenolic homologous, thus increasing the favorable characteristics of such inorganic hydraulic-binder brake pads and related technology.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Non-Asbestos Organic (NAO) Disc Pad Wear Behavior: Divergence of Thickness Loss and Weight Loss

2018-01-1866

View Details

TECHNICAL PAPER

Non-Asbestos Organic (NAO) Disc Pad Wear Behavior: Divergence of Thickness Loss and Weight Loss

2018-01-1866

View Details

TECHNICAL PAPER

Open-Loop Characteristics Analysis and Control of High Speed On-Off Valve

2018-01-1868

View Details

X