Browse Publications Technical Papers 2018-01-1934
2018-10-30

DC Arc Fault Detection Methods in MEA Distribution Systems 2018-01-1934

Direct current (DC) for primary power distribution is a promising solution that is being explored by aircraft system integrators for MEA applications to enable the paralleling of non-synchronized engine off-take generators, and to enable the reduction of energy conversion stages required to supply electronically actuated loads. However, a significant challenge in the use of DC systems is the reliable detection of arc faults. Arcing presents a significant fire risk to aircraft and their presence can result in critical system damage and potentially fatal conditions. Series arc faults in DC systems are particularly challenging to detect as the associated reduction in system current eliminates the use of conventional overcurrent and current differential methods for fault detection. This paper provides an overview of series arc faults in DC systems and presents both simulation and hardware results to illustrate key trends, characteristics and discriminating features. It also presents a comprehensive review of arc fault detection and diagnosis techniques that have been proposed for a wide range of aerospace and other applications. The paper concludes with a discussion on the unique challenges and opportunities for the application of both deterministic and probabilistic methods in MEA systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

High Temperature, High Frequency SiC Three Phase Inverter for Aircraft Applications

2010-01-1798

View Details

TECHNICAL PAPER

Preliminary Sizing of a Supersonic Commercial Transport Between Mach 2.0 and 2.4

965589

View Details

RESEARCH REPORT

Unsettled Domains Concerning Autonomous System Validation and Verification Processes

EPR2019012

View Details

X