Browse Publications Technical Papers 2019-01-0012
2019-01-15

Tribological Performance of an Engine Mineral Oil Blended with a Vegetable Oil under Approached Long-Term Use Conditions 2019-01-0012

It has widely reported that tribological performance of engine mineral oils (EMOs) can be improved by blending them with vegetable oils (VOs) in certain concentrations. Nonetheless, bio-oils are more susceptible to oxidation than EMOs by thermal ageing, which could be a drawback when they are used in engines comprising high variations of temperature. In this paper, a comparative analysis of tribological performance of an EMO and a blend made of 80%vol. of EMO and 20%vol. of a VO in fresh and aged conditions is given. The VO selected for the blend was Jatropha oil since various advantages reported in literature. EMO and B20 were thermally aged in laboratory approaching actual oxidation and additives depletion caused in EMO used in a car for 7500 km. The effects of ageing on the oils were evaluated by means of oxidation (PAI value), Zinc dialkyldithiophosphates (ZDDPs) depletion and viscosity. The tribological performance of the oils was determined by measuring the friction coefficients and wear rates generated in samples from engine cylinder liners in a pin-on-disk tester under boundary lubrication conditions. The ageing caused increased viscosity in B20 contrary to EMO that presented a slight decrease. The friction coefficients of B20 were lower than EMO in fresh and aged states. Moreover, the wear rate caused by fresh EMO and B20 were similar; however, ageing caused an increased wear rate by EMO but a decreased rate by B20 meaning that B20 exhibited better tribological performance than EMO under boundary lubrication in fresh and aged conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Improvement in the Compatibility Between the Wear Rates of Top Ring and Liner Materials

970833

View Details

TECHNICAL PAPER

The Influence of Fatty Acids and Fatty Acids Mixtures on the Lubricity of Low-Sulfur Diesel Fuels

2001-01-1929

View Details

TECHNICAL PAPER

Piston Ring Solutions on Side Wear to the Next Generation of Truck Engines

2011-01-0399

View Details

X