Browse Publications Technical Papers 2019-01-0198

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES 2019-01-0198

It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES). Results of the RANS turbulence model have been compared with multi-cycle averaged LES results in order to assess the performance of the RANS model in predicting an accurate pre-chamber filling process until spark time. The orientation of the orifices was observed to have a profound impact on the spatial distribution of fuel concentration and turbulence intensity around the spark-plug. Overall, the RANS model employed was found to provide very good results.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Towards a General Turbulent Combustion Model for spark Ignition Engines


View Details


Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios


View Details


The M111 Engine CCD and Emissions Test: Is it Relevant to Real-World Vehicle Data?


View Details