Browse Publications Technical Papers 2019-01-0247
2019-04-02

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System 2019-01-0247

Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point. In addition to a test bench demonstration, the described system is also planned to be demonstrated at a vehicle system level. This paper summarizes the process and results of the 50% BTE engine development effort with a focus on efficiency and performance.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Size Distribution of Diesel Soot in the Lubricating Oil

912344

View Details

TECHNICAL PAPER

Size Distribution of Diesel Soot in the Lubricating Oil

912344

View Details

TECHNICAL PAPER

A Modern HD-Diesel Engine with Rapeseed Oil, DPF and SCR

2008-01-1382

View Details

X