Browse Publications Technical Papers 2019-01-0432
2019-04-02

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling 2019-01-0432

The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation. Considering the variation of vehicle sprung mass in the movement process, an AUKF approach is adopted to identify the sprung mass by tuning various road classification process variances of the vehicle system in real time. Then, by combing the identification sprung mass via AUKF observer and nonlinear coupling dynamics of tire lateral force, modified T-S model-based observer is developed to estimate the vehicle coupling roll state. The stability conditions for proposed T-S observer are deduced using linear matrix inequalities (LMI). Finally, using a high-fidelity CarSim® software platform, the proposed dual observer approach is verified through a J-turn test, and simulations show that more accurate are obtained by comparing with the traditional T-S approach. The research achievements develop a reasonable algorithm to apply to the vehicle chassis control system.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Real Time 7 DOF Vehicle Dynamics Model and its Experimental Verification

2002-01-1184

View Details

TECHNICAL PAPER

Empirical Testing of Vehicular Rotational Motion

2012-01-0602

View Details

TECHNICAL PAPER

Experimental Analysis of Suspension Kinematics and Compliance Characteristics of Sensitivities and Combined Load Cases with the Suspension Motion Simulator

2019-01-0852

View Details

X