Browse Publications Technical Papers 2019-01-0438
2019-04-02

Pressure Estimation Algorithms in Decoupled Electro-Hydraulic Brake System Considering the Friction and Pressure-Position Relationship 2019-01-0438

This paper presents several pressure estimation algorithms (PEAs) for a decoupled electro-hydraulic brake system (EHB), which is driven by an electric motor + reduction gear. Most of the pressure control solutions are based on standard pressure-based feedback control, requiring a pressure signal. Although the pressure sensor can produce the pressure feedback signal, it will increase cost and enlarge installation space. The rotation angle of electric motor is available by the built-in sensor, so the pressure can be estimated by using the rotation angle. Considering the typical nonlinearities (i.e. friction, pressure-position relationship) and uncertainties (i.e. disturbance caused by friction model), the estimation-oriented model is established. The LuGre model is selected to describe the friction, and the pressure-position relationship is fitted by a quadratic polynomial. Based on the estimation-oriented model, the force-based PEA (FPEA) and the interconnected PEA (IPEA) are designed, respectively. What makes these two PEAs different is that the IPEA considers the pressure-position relationship. The comparison and analysis of the proposed PEAs have been conducted via some typical ordinary braking scenarios. The sensitivity analysis has also been done to obtain the influences on the performance of the IPEA, if the estimation deviation of the friction occurs. Most importantly, this study realized a pressure estimation without add-in sensors, which makes decoupled EHB realizable to become the actuator for automobile active safety systems, giving a promising way to achieve far better performance.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Model-Based Pneumatic Braking Force Control for the Emergency Braking System of Tractor-Semitrailer

2018-01-0824

View Details

JOURNAL ARTICLE

A Discussion of Complex Eigenvalue Analytical Methods as They Relate to the Prediction of Brake Noise

2016-01-1299

View Details

TECHNICAL PAPER

Lane Change Maneuver Driving a Car with Reduced Tire Pressure

2014-01-0466

View Details

X