Browse Publications Technical Papers 2019-01-0439
2019-04-02

Distributed Drive Electric Vehicle Longitudinal Velocity Estimation with Adaptive Kalman Filter: Theory and Experiment 2019-01-0439

Velocity is one of the most important inputs of active safety systems such as ABS, TCS, ESC, ACC, AEB et al. In a distributed drive electric vehicle equipped with four in-wheel motors, velocity is hard to obtain due to all-wheel drive, especially in wheel slipping conditions. This paper focus on longitudinal velocity estimation of the distributed drive electric vehicle. Firstly, a basic longitudinal velocity estimation method is built based on a typical Kalman filter, where four wheel speeds obtained by wheel speed sensors constitute an observation variable and the longitudinal acceleration measured by an inertia moment unit is chosen as input variable. In simulations, the typical Kalman filter show good results when no wheel slips; when one or more wheels slip, the typical Kalman filter with constant covariance matrices does not work well. Therefore, a gain matrix adjusting Kalman filter which can detect the wheel slip and cope with that is proposed. Simulations are carried out in different conditions, including no wheel slips, one wheel slips, all wheel slip, passing a bump, and variable acceleration drive, and the results show that wheel slip has very little impact on estimation velocity. On-road experiments, including drive with sudden acceleration and deceleration, pass a bump, and accelerate on wet tile road, show satisfying results. On wet tile road, where the maximum slip rate is larger than 0.9, the velocity estimation error converges to within 5% in one second and to zero at last.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Model Based Yaw Rate Estimation of Electric Vehicle with 4 in-Wheel Motors

2009-01-0463

View Details

TECHNICAL PAPER

Improvement of Lap-Time of a Rear Wheel Drive Electric Racing Vehicle by a Novel Motor Torque Control Strategy

2017-01-0509

View Details

TECHNICAL PAPER

Stability Assist System for a Two-Motor-Drive Electric Vehicle using Fuzzy Logic

2003-01-1285

View Details

X