Browse Publications Technical Papers 2019-01-0546

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine 2019-01-0546

Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses. In terms of energy transfer, switching to the steel piston design was shown to reduce heat transfer to the coolant, consistent with lower friction work and reduced conduction through the ring pack, and increase the energy transfer to the oil. Piston blowby was also greatly reduced. Ignition delay times and overall combustion durations were reduced with the steel piston design, possibly indicative of higher piston surface temperatures.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Multi-disciplinary Approach for Evaluating Strength of Engine Cylinder Head and Crankcase Assembly under Thermo-Structural Loads


View Details


Resonance of a Spring Opposed Free Piston Engine Device


View Details


Numerical Simulation of Swirling Port-Valve-Cylinder Flow in Diesel Engines


View Details