Browse Publications Technical Papers 2019-01-0827
2019-04-02

Multi-Objective Optimization of Gerotor Port Design by Genetic Algorithm with Considerations on Kinematic vs. Actual Flow Ripple 2019-01-0827

The kinematic flow ripple for gerotor pumps is often used as a metric for comparison among different gearsets. However, compressibility, internal leakages, and throttling effects have an impact on the performance of the pump and cause the real flow ripple to deviate from the kinematic flow ripple. To counter this phenomenon, the ports can be designed to account for fluid effects to reduce the outlet flow ripple, internal pressure peaks, and localized cavitation due to throttling while simultaneously improving the volumetric efficiency. The design of the ports is typically heuristic, but a more advanced approach can be to use a numerical fluid model for virtual prototyping. In this work, a multi-objective optimization by genetic algorithm using an experimentally validated, lumped parameter, fluid-dynamic model is used to design the port geometry. This optimization is repeated for five pumps with different kinematic flow ripples, and the simulated performance of the pumps with optimized port geometries is compared to the kinematic flow in each case. The performance of the pumps with the optimized ports in each case was a significant improvement over the pumps with kinematically-timed ports. The kinematic flow ripple did not predict the exact shape of the simulated flow ripple with great accuracy, but it did predict the trend of the signal power of the simulated flow ripples very well. In addition to demonstrating a multi-objective optimization strategy for port geometry, this work also demonstrates that the kinematic flow ripple is a suitable design metric for comparing gerotor gearsets apart from a full fluid simulation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Advanced Mathematical Modeling of Electronic Unit-Injector Systems for Heavy Duty Diesel Engine Application

2008-01-1195

View Details

TECHNICAL PAPER

Optimization of Vehicle Driveline Vibrations Using Genetic Algorithm (GA)

2001-01-1511

View Details

TECHNICAL PAPER

Development of the Intelligent Operator Algorithm for an Articulated Wheel Loader Model

880776

View Details

X