Browse Publications Technical Papers 2019-01-0831
2019-04-02

Rapid Optimal Design of a Light Vehicle Hydraulic Brake System 2019-01-0831

Designing automobile brake systems is generally complex and time consuming. Indeed, the brake system integrates several components and has to satisfy numerous conflicting government regulations. Due to these constraints, designing an optimal configuration is not easy. This paper consequently proposes a simple, intuitive and automated methodology that enables rapid optimal design of light vehicle hydraulic brake systems. Firstly, the system is modeled through cascaded analytical equations for each component. A large design space is then generated by varying the operational parameters of each component in its specific reasonable range. The system components under consideration include the brake pedal, the master cylinder, the vacuum-assisted booster, the brake line and the brake pistons. Successful system configurations are identified by implementing the requirements of the two most relevant safety homologation standards for light vehicle brake systems (US and EU legislations). Ergonomics constraints and the compensation for the fluid losses are then retained as further design requirements. Finally, the optimal design identification is carried out based on overall system braking performance and the cost. Particularly, optimal braking performance is based on the defined braking efficiency, while a cost function criterion is developed quantifying the overcapacity of the design. The developed methodology is proved to identify the optimal brake system design in a short period of time by generating and testing over 150000 candidate designs for each considered vehicle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Use of the Computer in Determining Brake Balance

741085

View Details

JOURNAL ARTICLE

Drag Torque in Disk Brakes: Significance, Measurement and Challenges

2015-01-2670

View Details

TECHNICAL PAPER

Residual Brake Torque Measurement on Dynamometer in Terms of Wheel Load and Side Forces

2017-36-0016

View Details

X