Browse Publications Technical Papers 2019-01-0984
2019-04-02

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines 2019-01-0984

The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine. These simulations indicate that the location downstream of the low-pressure turbine offers nearly the best NOx conversion, and that the optimal volume of the ccSCR in this location is 25% of a conventional SCR catalyst. The second model describes a conventional heavy-duty aftertreatment system, to which a ccSCR was added. This model was used to examine the performance of the ccSCR in the context of the full ATS. Optimization of the diesel oxidation catalyst (DOC) and SCR catalyst designs in this system was considered, as well as the use of an NH3 storage-based control strategy for DEF dosing to the SCR catalysts.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-01-0338

View Details

TECHNICAL PAPER

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-01-0757

View Details

TECHNICAL PAPER

Sensitivity Study on Thermal and Soot Oxidation Dynamics of Gasoline Particulate Filters

2019-01-0990

View Details

X