Browse Publications Technical Papers 2019-01-1079
2019-04-02

Machine Learning with Decision Trees and Multi-Armed Bandits: An Interactive Vehicle Recommender System 2019-01-1079

Recommender systems guide a user to useful objects in a large space of possible options in a personalized way. In this paper, we study recommender systems for vehicles. Compared to previous research on recommender systems in other domains (e.g., movies or music), there are two major challenges associated with recommending vehicles. First, typical customers purchase fewer cars than movies or pieces of music. Thus, it is difficult to obtain rich information about a customer’s vehicle purchase history. Second, content information obtained about a customer (e.g., demographics, vehicle preferences, etc.) is also difficult to acquire during a relatively short stay in a dealership. To address these two challenges, we propose an interactive vehicle recommender system based a novel machine learning method that integrates decision trees and multi-armed bandits. Decision tree learning effectively selects important questions to ask the customer and encodes the customer's key preferences. With these preferences as prior information, the multi-armed bandit algorithm, using Thompson sampling, efficiently leverages the user’s feedback to improve the recommendations in an online fashion. The empirical results show that our hybrid learning method can effectively make interactive vehicle recommendations to users.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Conditions for Significant Efficiency Improvement in the Product Development Chain by the Application of Integrated Virtual Engineering

2007-01-0951

View Details

TECHNICAL PAPER

The Fatigue Avoidance Scheduling Tool: Modeling to Minimize the Effects of Fatigue on Cognitive Performance

2004-01-2151

View Details

TECHNICAL PAPER

Driver Training for Emergency Situations

720144

View Details

X