Browse Publications Technical Papers 2019-01-1133
2019-04-02

Application of Collision Probability Estimation to Calibration of Advanced Driver Assistance Systems 2019-01-1133

Advanced Driver Assistance Systems (ADAS) are designed and calibrated rigorously to provide them with the robustness against highly uncertain environments that they usually operate in. Typical calibration procedures for such systems rely extensively on track (controlled environment) testing, which is time-consuming, expensive, and sometimes cannot cover all the critical test scenarios that could be encountered by ADAS in the real world. Therefore, virtual (simulation-based) testing and validation has been gaining more prominence and emphasis for ensuring high coverage along with easier scalability and usage. This paper attempts to provide an alternative approach for calibrating ADAS in the controller validation phase by the aid of simulated test case scenarios. The study executes characterization of the uncertainty in the position and heading of the ego and the obstacle vehicles. This exercise captures the uncertainties in the states detection of vehicles in the environment and localization errors of the states of the ego vehicle. Following it, the approach estimates the probability of collision between the two vehicles for a given trajectory through a Monte Carlo approach. For illustration purposes, the method is then applied on tuning a Lane Change Assistance System for a four-wheel sedan equipped with Short-Range and Long-Range Radar Sensors.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Phenomenological Traffic Simulation as a Basis for an RDE Development Methodology

2019-26-0346

View Details

JOURNAL ARTICLE

2-D CFAR Procedure of Multiple Target Detection for Automotive Radar

07-11-01-0007

View Details

TECHNICAL PAPER

An Experimental Investigation of a CW/CA System for Automobiles

1999-01-1238

View Details

X