Browse Publications Technical Papers 2019-01-1412

Advances in partial oxidation of Palm Oil Based Biodiesel Reforming to Hydrogen Production for Diesel Engine Applications 2019-01-1412

The aims of this research is investigate the hydrogen production via biodiesel fuel partial oxidation reforming. Hydrogen production can enhance combustion in cylinder and improved aftertreatment activities. A reforming reaction is when a chemical reacts with oxygen available in exhaust gas and diesel fuel injection. The 2%Pt-1%Rh-CeO2-ZrO2/γ-Al2O3 was selected as the active catalyst in this research. This study investigates the effect of gas space velocity (SV) (e.g., 10k h-1 and 16k h-1) and fuel addition flow rate (10-30 ml/h) on hydrogen production efficiency. As can be seen that the hydrogen from reforming reaction was promoted under the real engine operating conditions. Hydrogen is produced via partial oxidation of hydrocarbons reforming. The effects of space velocity SV (h−1) and hydrocarbon addition, which enhanced energy input for the reforming process, are the main effect on hydrogen production over the reforming catalyst. The maximum hydrogen yield are achieved 11%. In the future, hydrogen production via partial oxidation fuel reforming could be developed for production of hydrogen on-board the vehicle.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.