Browse Publications Technical Papers 2019-01-1435
2019-03-25

Design and Optimization of Crash-Box of Passenger Vehicle to Enhance Energy Absorption 2019-01-1435

Abstract: Frontal crash is the most common type of accidents in passenger vehicles which results in severe injuries or fatalities. During frontal crash, some frontal vehicle body has plastic deformation and absorbs impact energy. Hence vehicle crashworthiness is important consideration for safety aspect. The crash box is one of the most important parts in vehicle frontal structure assembly which absorb crash energy during impact. In case of frontal crash accident, crash box is expected to be collapsed by absorbing crash energy prior to the other parts so that the damage to the main cabin frame and occupant injury can be minimized. The main objective of this work is to design & optimize the crash box of passenger vehicle to enhance energy absorption. The modeling of the crash box is done in CATIA V5 and simulations are carried out by using ANSYS. The results show significant improvement in the energy absorption with new design of the crash box and it is validated experimentally on UTM. Further numerical analysis of bumper beam assembly is performed with consideration of new design of crash box. The meshing of bumper beam assembly is done in Hypermesh and frontal impact analysis is performed using LS-dyna as per standards. The result shows significant improvement of energy absorption in bumper beam assembly with optimized new design of crash box. Keywords: Passenger vehicle, Crash box, Bumper beam assembly, Impact Analysis, Energy absorption

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X