Browse Publications Technical Papers 2019-01-1852

Self-affinity of an Aircraft Pilot's Gaze Direction as a Marker of Visual Tunneling 2019-01-1852

For the last few years, a great deal of interest has been paid to crew monitoring systems in order to tackle potential safety problems during a flight. They aim at detecting any degraded physiological and/or cognitive state of an aircraft pilot, such as visual tunneling or excessive focalization. Indeed, they might have a negative impact on his performance to pursue his mission with adequate flight safety levels. One of the usual approaches consists in using sensors to collect physiological signals which are analyzed. Two main families exist to process the signals. The first one combines feature extraction and machine learning whereas the second is based on deep-learning approaches but may require a large amount of labeled data. Here, we focused on the first family. In this case, various features can be deduced from the data by different approaches: spectrum analysis, a priori modeling and nonlinear dynamical system analysis techniques including the estimation of the self-affinity of the signals. In this paper, our purpose was to analyze whether the self-affinity of the pilot gaze direction can be related to his cognitive state. To this end, an experiment was carried out on 18 subjects in a representative aircraft environment based on a modified version of the software MATB-II. The scenarii were designed to elicit different levels of mental workload eventually associated to attentional tunneling. A database to train the machine learning step was first created by recording the directions of gaze of the subjects with an eye-tracker. The self-affinities of these signals were extracted with the Detrended Fluctuation Analysis method. They constituted the inputs of the classifier based on a Support Vector Machine. Then, new signals were analyzed and classified. Preliminary results showed promising abilities to detect visual tunneling episodes for different levels of mental workload.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.