Browse Publications Technical Papers 2019-01-1945
2019-06-10

Lattice Boltzmann Simulations of Flow Over an Iced Airfoil 2019-01-1945

This paper presents an aerodynamic degradation study of an iced airfoil, using the Lattice Boltzmann approach with the commercial software PowerFLOW. Three-dimensional numerical simulations were performed with an extruded constant section of the GLC-305 airfoil with a leading-edge double-horn ice using periodic boundary condition. The freestream Reynolds number, based on the chord, is 3.5 million and the Mach number is 0.12. An extensive comparison of the main flow features with experimental data is performed, including aerodynamic coefficients, pressure coefficient distributions, velocity and turbulence contours and profiles, and stagnation streamlines. The drag coefficient agrees well with experiments, in spite of a small shift. Two different wind tunnel measurements, using different measurement techniques, were compared to the CFD results, which mostly stayed in between the two experimental data. Velocity and turbulence intensity contours as well as stagnation streamlines enabled a more detailed comparison of the flowfield, which showed great accuracy of the simulations to predict the reattachment location. Overall, very good agreement is obtained with the available reference data. The numerical tool used to calculate the aerodynamic performance was able to deal with very complex flows, which in this case are highly unsteady, turbulent and characterized by large recirculation zones downstream of the ice. Such flow unsteadiness is caused by the flow separation and favorable pressure gradients. A mesh resolution analysis indicated grid convergence using a medium resolution setup, which provided good accuracy and fast turnaround times for the simulations. This enabled a complete angle of attack polar sweep, including post-stall angles.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X