Browse Publications Technical Papers 2019-01-1949
2019-06-10

Utilization of Single Cantilever Beam Test for Characterization of Ice Adhesion 2019-01-1949

Many engineering systems operating in a cold environment are challenged by ice accretion, which unfavorably affects their aerodynamics and degrades both their performance and safety. Precise characterization of ice adhesion is crucial for an effective design of ice protection system. In this paper, a fracture mechanics-based approach incorporating single cantilever beam test is used to characterize the near mode-I interfacial adhesion of a typical ice/aluminum interface with different surface roughness. In this asymmetric beam test, a thin layer of ice is formed between a fixed and elastically deformable beam subjected to the applied loading. The measurements showed a range of the interfacial adhesion energy (GIC) between 0.11 and 1.34 J/m 2, depending on the substrate surface roughness. The detailed inspection of the interfacial ice fracture surface, using fracture surface replication technique, revealed a fracture mode transition with the measured macroscopic fracture toughness. The higher level of fracture toughness was associated with cohesive-type interfacial failure. The lower level of fracture toughness on smoother surfaces was associated with adhesive interface failure.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-01-1205

View Details

TECHNICAL PAPER

Ten Years' Service Experience with Alclad Materials in Aircraft

390149

View Details

STANDARD

Skid Control System Vibration Survey

AIR764D

View Details

X