Browse Publications Technical Papers 2019-01-1963
2019-06-10

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C 2019-01-1963

Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate. In this paper, a new thermodynamic model for ice crystal accretion is developed through adaptation of the Extended Messinger Model (EMM) from supercooled water conditions to mixed phase conditions (ice crystal and supercooled water). A novel three-layer accretion structure is proposed and the underlying equations described. The EMM improves upon the original model for airframe icing, the Messinger Model, by permitting a linear temperature gradient through the ice and water layers. This in turn allows prediction of the time over which water exists in isolation on an initially warm surface, before an ice layer forms. This is of particular interest to engine icing, as surfaces may initially be significantly above freezing temperature, before cooling on exposure to ice particles. The method is solved in a multi-step approach, where the overall exposure time is divided into discrete windows, and the calculation performed over each window. This allows the local flow conditions to be updated between windows, permitting the incorporation of a reducing flow enthalpy due to particle evaporation, as well as transient engine operation. Model results are then compared to experimental results. Comparisons are made to solutions generated using the standard Messinger Model.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements

2019-01-1953

View Details

TECHNICAL PAPER

An Experimental Investigation of a Wind-Driven Water Droplet over the Slippery Liquid Infused Porous Surface

2019-01-1951

View Details

TECHNICAL PAPER

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-01-2125

View Details

X