Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine 2019-24-0016
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
Citation: Li, X., Yin, L., Tunestal, P., and Johansson, R., "Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine," SAE Technical Paper 2019-24-0016, 2019, https://doi.org/10.4271/2019-24-0016. Download Citation
Author(s):
Xiufei Li, Lianhao Yin, Per Tunestal, Rolf Johansson
Affiliated:
Lund University
Pages: 6
Event:
14th International Conference on Engines & Vehicles
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Combustion and combustion processes
Fuel injection
Engine cylinders
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »