Browse Publications Technical Papers 2019-24-0064
2019-09-09

A Comprehensive Hybrid Vehicle Model for Energetic Analyses on Different Powertrain Architectures 2019-24-0064

In the global quest for preventing fossil fuel depletion and reducing air pollution, hybridization plays a fundamental role to achieve cleaner and more fuel-efficient automotive propulsion systems.
While hybrid powertrains offer many opportunities, they also present new developmental challenges. Due to the many variants and possible architectures, development issues, such as the definition of powertrain concepts and the optimization of operating strategies, are becoming more and more important.
The paper presents model-based fuel economy analyses of different hybrid vehicle configurations, depending on the position of the electric motor generator (EMG). The analyses are intended to support the design of powertrain architecture and the components sizing, depending on the driving scenario, with the aim of reducing fuel consumption and CO2 emissions.
The analyses are performed making use of a comprehensive vehicle model, based on a hybrid (black-box and lumped parameters) approach, of a medium passenger car equipped with a turbocharged Diesel engine. The model has been enhanced to account for the additional components of two different powertrain configurations: one with the EMG directly coupled to the crankshaft and the other with the EMG positioned downstream the gearbox.
Simulations have been carried out vs. standard and real driving cycles for two energy management strategies, namely a rule-based strategy (RBS) and an equivalent consumption minimization strategy (ECMS). The results allow evaluating the impact of powertrain configuration and component sizing on fuel economy and CO2 emissions, in case of urban and extra-urban routes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of New 1.8-Liter Engine for Hybrid Vehicles

2009-01-1061

View Details

TECHNICAL PAPER

Retrofit of a Heavy-Duty Diesel Truck: Comparison of Parallel and Series Hybrid Architectures with Waste Heat Recovery

2020-24-0015

View Details

TECHNICAL PAPER

PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm

2022-01-0739

View Details

X