Browse Publications Technical Papers 2019-24-0079

A New Co-Simulation Approach for Tolerance Analysis on Vehicle Propulsion Subsystem 2019-24-0079

An increasing demand for reducing cost and time effort of the design process via improved CAE (Computer-Aided Engineer) tools and methods has characterized the automotive industry over the past two decades. One of the main challenges involves the effective simulation of a vehicle’s propulsion system dealing with different physical domains: several examples have been proposed in the literature mainly based on co-simulation approach which involves a specific tool for each propulsion system part modeling. Nevertheless, these solutions are not fully suitable and effective to perform statistical analysis including all physical parameters. In this respect, this paper presents the definition and implementation of a new simulation methodology applied to a propulsion subsystem. The reported approach is based on the usage of Synopsis SABER as dominant tool for co-simulation: models of electronic circuitry, electro-mechanical components and control algorithm are implemented in SABER to perform tolerance analysis; in addition, a dynamic link with engine plant model developed in GT-SUITE environment has been established via a dedicated procedure. Moreover, a HPC Grid (High Performance Computing Grid) is used with the aim to execute simulations of long engine maneuvers as well as to parallelize jobs while applying Monte-Carlo methods. The overall approach is tested on the active thermal management subsystem of a General Motors internal combustion engine in order to evaluate the robustness of control algorithm against electro-mechanical part variation and software calibration settings.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Vehicle Lane Change Automation with Active Steering - Theoretical Studies and Numerical Investigations


View Details


Computational Analysis of Spray Pre-treatment in Automotive Applications


View Details


An Innovative Approach to Race Track Simulations for Vehicle Thermal Management


View Details