Browse Publications Technical Papers 2019-24-0094

Numerical Simulation of Syngas Blends Combustion in a Research Single-Cylinder Engine 2019-24-0094

Despite syngas is a promising alternative fuel for internal combustion engines (ICEs), its extensive adoption has not been adequately investigated so far. The dedicated literature offers several fundamental studies dealing with H2/CO blends burning at high pressure and room temperature, as well as preheated mixture at low pressure. However, these thermodynamic states are far from the operational conditions typical of ICEs. Therefore, it is essential to investigate the syngas combustion process at engine-like conditions to shed light on this fuel performance, in order to fully benefit from syngas characteristics in ICE application. One of the key properties to characterize a combustion process is laminar flame speed, which is also used by the most widespread turbulent combustion models. In the first part, a database of premixed laminar burning rates at engine-like conditions for different syngas (H2/CO) blends is created based on one-dimensional unstretched flame simulations using two validated chemical mechanisms. Then the resulting laminar flame speed values are fitted using a validated in-house method based on logarithmic correlations. In the second part of the paper, these are implemented in the G-equation combustion model and three-dimensional simulations of a four stroke Spark Ignition (SI) optical access engine fueled by syngas are carried out. The combustion characteristics of two H2/CO blends (50/50 and 75/25 volume fraction, respectively) are investigated and the simulation results are compared to the available experimental data for the same fuels. This joint numerical/experimental study allows to investigate and optimize the syngas combustion for ICEs and it provides general guidelines to further understand the feasibility of this alternative fuel in terms of ICE utilizations.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Simulation Study of Effects of Injection Rate Profile and Air Entrainment Characteristics on D.I. Diesel Combustion


View Details


Numerical Simulation for Ignitability of Spark Plug using Detailed Chemical Kinetics


View Details


Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD


View Details