Browse Publications Technical Papers 2019-24-0163
2019-09-09

Heat Transfer Characterization of Catalytic Converter Substrates During Warm-Up 2019-24-0163

The transient heat transfer behavior of a real size automotive catalytic reactor has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO and C3H6 oxidations, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters have been chosen based on the tuning of experimental data. The impact of different initial catalytic converter temperatures, inlet flow temperatures and inlet flow rates have been quantified, even in terms of overall cumulative emissions. . A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinate are defined. Using this suitably modified coordinates, for the case of negligible axial solid conduction, computed solid temperature at the reactor outlet lay on the typical S-curve. For 4 different values of dimensionless length along the catalytic converter, an analytical function is offered (similar to Arrhenius or Viebe curves). This will allow predicting the thermal response based on an analytical expression with two tuning parameters, without the need of simulations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X