Browse Publications Technical Papers 2019-26-0001

Vehicle Side Safety Enhancement through Door Intrusion Barrier Analysis and Recuperation 2019-26-0001

The automobile industry is making huge strides to improve vehicle and occupant safety. A lot of safety improvements and modifications have been made in the past decade. But the side impact is still overlooked as not much has been improved for side safety despite most of the accidents and collisions happen to the side of a vehicle. Door intrusion barriers are the primary protection feature along with A, B and C pillars. Crashworthiness mainly depends on the position, cross-section and material of the intrusion barrier. So, our work mainly focuses on finding the optimum position, choosing the correct cross-section and finding the right material for the intrusion barrier. The objective of this project is to minimize the damage to the side of the vehicle by increasing its crashworthiness thereby reducing passenger injuries. A model of a vehicle door has been designed in Solid Works and various cross sections of door intrusion barriers like circular, rectangular, H-section, I section, E and C section have been developed. The crash test has been conducted according to New Car Assessment Program (NCAP) norms and the best possible configuration with highest safety level has been found. The barrier developed successfully reduced deformation by 36.667% and was subjected to a much lesser stress which was 28% lower than the existing barriers.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

An Application of Car Crash Test Technology to a Causal Investigation of a Revolving Door Accident


View Details


Performances Evaluation of Longitudinal Barriers-First Experimental Data with Light Vehicles


View Details


Influence of Mass Ratio and Structural Compatibility on the Severity of Injuries Sustained by the Near Side Occupants in Car-to-Car Side Collisions


View Details