Browse Publications Technical Papers 2019-26-0147
2019-01-09

Highly Dynamic Intake and Exhaust Back Pressure Control 2019-26-0147

Measuring emissions of internal combustion engines-not only at steady-state conditions, but also with highly dynamic test cycles-is an important issue in modern engine development. Due to the fact that ambient conditions have an essential influence on power and emissions of internal combustion engines, test beds used for such measurements typically incorporate intake air and exhaust back pressure control for reasons of repeatability, accuracy and comparability. As test cycle dynamics get faster and legal pressure tolerances get narrower, pressure control becomes more demanding and simple PI control schemes are pushed to their limits; therefore, more sophisticated control schemes are necessary. In this paper, a linearised model is first derived and then used to both simplify and optimise PI controller tuning. This is done by means of frequency domain methods. Limitations to such controllers and possible approaches to overcome them are discussed. The main limitation is shown to be caused by resonance effects in the pipe. These effects are modelled thoroughly using partial differential equations to obtain a resonance compensation method. This method is both simple and robust with respect to temperature changes, which renders it perfectly applicable to exhaust back pressure control. The proposed controller with resonance compensation is demonstrated in simulation and validated in the course of experiments; the latter show a reduction of pressure fluctuations from ±30 mbar using a standard PI controller to ±3 mbar using the enhanced controller with resonance compensation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Quantitative Feedback Control of Air Path in Diesel-Dual-Fuel Engine

2010-01-2210

View Details

TECHNICAL PAPER

Application of Nonlinear Transformations to A/F Ratio and Speed Control in an IC Engine

1999-01-0858

View Details

TECHNICAL PAPER

Fault Detection for Common Rail Diesel Engines with Low and High Pressure Exhaust Gas Recirculation

2011-24-0139

View Details

X