Browse Publications Technical Papers 2019-26-0263

Computational Investigation of Lightweight Aero-Gel Insulation Materials and Gas Filled Panels (GFP) for Improved Occupant Thermal Comfort 2019-26-0263

Energy efficient HVAC System is getting a significant attention from the automotive industries. By reducing environmental thermal load, it is expected to achieve a vehicle climate control system that requires less A/C power on a vehicle while maintaining the occupant thermal comfort. In order to accomplish this, several technologies to reduce the environmental thermal load are required that includes a glazing system with solar reflecting glasses, highly effective thermal insulation materials, and vehicle interior weight reduction strategies. The structure of a vehicle can absorb a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air and the interior trim surface temperature. The new polyurethane-based aerogel material and Gas filled panels are one of the effective method and does the same job as conventional materials in half the space and providing high thermal insulation and maintaining its durability, this foam could be incorporated into the door frames, the hood and the roof of the vehicle. High performance thermal insulation reduces the amount of heat transfer between surfaces and helps to maintain the cabin temperature at the desired level and provide better passenger comfort. Since automotive industries try to reduce the HVAC power consumption due to the tightening fuel economy, it has become necessary to develop a methodology to predict the impact of various design choices in early design. The computational methodology been developed to simulate the passenger compartment thermal environment conditions during soak and cool-down process. The goal of the investigation is to present a comprehensive assessment of the technical and economic aspects of high performance insulation materials and study the sensitivity interior thermal mass and different glazing impacts.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.