Browse Publications Technical Papers 2019-26-0359
2019-01-19

Determination of Principal Variables for Prediction of Fuel Economy Using Principal Component Analysis 2019-26-0359

The complexity of Urban driving conditions and the human behaviour introduces undesired variabilities while establishing of Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a particular cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components. The aim of this study is reduce the variables which are strongly co-related using various statistical techniques, the primary and the most effective technique being Principal Component analysis.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X