Browse Publications Technical Papers 2019-28-0072

Investigation of machinability characteristics on turning of Nimonic 90A using Al2O3 and CNT Nanofluids in Groundnut oil 2019-28-0072

Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by AlTiN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array parameter design and response surface optimization has been employed. 3D surface plots, 1D main effects plots, Taguchi S/N and variance tests are used to study the effect of concentration on the machining of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics. From the optimization analysis, 0.25% nCNT NFs along with a cutting speed of 40 m/min and 0.14 mm/rev feed rate has proved the better machining performance on measures above that of nAl2O3. Based on optical micrograph analysis, abrasion, adhesion and diffusion wear are found to be lower for nAl2O3 than that of nCNT NFS. On examination, the chip morphology, the curl diameter of produced helical and tubular chips are exposed to very small for CNT due to the increase in lubricity and decrease of tool friction on turning of Nimonic 90A.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.