Browse Publications Technical Papers 2019-28-0089
2019-10-11

Performance Assessment of Pyramidal Lattice Core Sandwich Engine Hood for Pedestrian Safety 2019-28-0089

Road accidents are increasing now-a-days, Safety of pedestrian is the great concern. In average, 10% of urban pedestrian accidents are fatal. Statistics show that the impact on front side of cars is the major cause of pedestrian deaths (83.5%). The function of a vehicle’s engine hood is to keep its engine covered and allow access to the engine compartment as required for maintenance and repair. The hood structure not only protects the engine cavity, but also keeps pedestrians away from the parts of that cavity. The absorption capability and stiffness of hood structures are the key points considered when designing a vehicle’s hood. The impact of the pedestrian head on automotive hood results in major injuries and sometimes in death. Conventional engine hood results in greater Head Injury Criterion (HIC) values. GFRP pyramidal lattice core structures are used in automobiles which is used for good energy absorption. GFRP pyramidal lattice core sandwich engine hood absorbs impact energy rather than transmitting it to the head. This will minimize the severity rate of injury of pedestrian during accident. This report deals with the analysis of GFRP pyramidal lattice core sandwich engine hood in ANSYS workbench under impact loading. This work mainly focuses on reducing pedestrian accidents. The results of finite element modelling of pyramidal lattice core sandwich engine hood yields lesser HIC values. This shows GFRP pyramidal lattice core absorbs more impact energy from the pedestrian head.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X