Browse Publications Technical Papers 2019-28-0126

Development of a Simulation Model for Computing Stable Configurations for Off - Road Vehicle 2019-28-0126

Off-highway vehicles operate under complex duty cycles which consist of handling varying terrain conditions under dynamic loads. A challenge for the equipment operator is to maintain stability of the vehicle during various field operations. The operator must make judgment calls on whether terrain and loading conditions are suitable for vehicle stability. In view of the increasing emphasis being placed on operator comfort and vehicle autonomy, a methodology to predict the degree of vehicle stability in varying terrains and dynamic loads will be an aid in designing safer vehicles. This paper describes a mathematical model capable of predicting the longitudinal overturning behavior of off-highway vehicle. A mathematical kinematic and dynamic model of the system is developed using Newton-Euler approach. This yields a system of non-linear equations which can be solved iteratively by using any commercial software to predict stability for varying terrains and dynamic loads. Given a vehicle geometry and terrain conditions, this methodology allows the simulation and prediction of various longitudinal overturning situations under dynamic loading. The modularity and scalability of the methodology will allow easy scaling and cross-product application. With increased focus on virtual design evaluation, this methodology also offers the ability to perform up-front evaluation of proposed designs for vehicle stability.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.