Browse Publications Technical Papers 2019-28-0173

Exploration of dry sliding wear behaviour of sisal fiber-reinforced Cashew Nut Shell Liquid and epoxy polymer matrix composite as an alternative friction material in automobiles 2019-28-0173

Brake pad is one of the foremost imperative part in the vehicle. Due to the environmental requirement, natural material/composites were the alternate source for component manufacturing. The composite made using hot press techniques by mixing ingredients such as natural fiber (treated sisal), cashew nut filler, graphite and alumina with resin (cashew nut shell liquid - CNSL and epoxy). Two formulas and four samples of each set were composed by varying the resin type and prepared the test samples with attain better hardness. The main intern of this proposed work is to appraise the dry sliding wear and friction performance of the prepared composites. The composites are taken for tribo test by varying the load of 10,20,30,40 N and sliding distance of 1000, 2000 m respectively. Experiments were performed at stated process parametric conditions to record the responses. The result shows that the CNSL resin composites specific wear resistance and frictional coefficients are found better than epoxy resin composites. The addition of filler element cashew nut shell particular shows a better wear resistant and friction coefficient. On the other hand, low wear resistance and low friction coefficient was appraised at high load of 40 N and sliding distance of 2000 m tribo parametric conditions. Further scanning electron microscopic analysis was carried out to observe wear mechanics with the formation of very fine debris on the worn surface and counter face of the composite.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.