Browse Publications Technical Papers 2019-32-0551

Effects of Sub-Chamber Configuration on Heat Release Rate in a Constant Volume Chamber simulating Lean-burn Natural Gas Engines 2019-32-0551

Sub-chamber is a useful device with regard to sustaining stable operation of compressed natural gas (CNG) engines under lean burn conditions. In our previous studies, we applied a sub-chamber injection system to CNG engines, in which a single injector and a spark plug are mounted in a small sub-chamber. The aim of this study is to investigate the effect of the sub-chamber configuration on heat release in the main combustion chamber. 11 types of sub-chamber with different nozzle number, nozzle diameter, and sub-chamber volume were examined under a condition that pressure is 2.3 MPa, and global equivalence ratio is 0.6. When the sub-chamber with smaller nozzles are used, the penetration velocity of burned gas jet increases. In addition, the velocity also increases with an increasing sub-chamber volume. The high-speed penetration of burned gas jet shortens the period of initial flame development. This is because the high-temperature burned gas quickly reaches to side wall of main chamber, and immediately ignites lean mixtures existing in the main chamber. Consequently, combustion duration time until heat release reaches 90 % is also shortened. On the other hand, the velocity difference between the jets from sub-chambers with different nozzle numbers is small. To predict the penetration velocity, we proposed an empirical formula based on the volume, nozzle diameter and nozzle number of sub-chamber. The jet intensity evaluated from the formula shows correlations with duration times of combustion periods as well as penetration velocities of burned gas jets.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.