Browse Publications Technical Papers 2020-01-0096

Reference Test System for Machine Vision Used for ADAS Functions 2020-01-0096

Advanced Driver Assistance Systems (ADAS) like Lane Departure Warning (LDW) and Lane Keep Assist (LKA) have been available for several years now but has experienced low customer acceptance and market penetration. These deficiencies can be traced to the inability of many of the perception systems to consistently recognize lane markings and localize the vehicle with respect to the lane markings in the real-world with poor markings, changing weather conditions and occlusions. Currently, there is no available standard or benchmark to evaluate the quality of either the lane markings or the perception algorithms. This work seeks to establish a reference test system that could be used by transportation agencies to evaluate the quality of their markings to support ADAS functions that rely on pavement markings. The test system can also be used by designers as a benchmark for their proprietary systems. To support this development, an extensive video dataset was collected at different times of day and weather conditions on various roads in Central Texas. The videos were evaluated on different state-of-the art lane detection algorithms and their performance was ranked based on a set of metrics specifically developed for evaluating the effectiveness of the lane estimation system. The test scenarios are comprised of a set of roadways and environmental features, as well as the pavement marking presence and luminance variables. A systems approach is presented by correlating the algorithm performance data to the environmental factors, lane marking types, color, material, and the retroreflectivity of pavement markings.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Vehicular Visual Sensor Blinding Detection by Integrating Variational Autoencoders with SVM


View Details


Autonomous Vehicles Camera Blinding Attack Detection Using Sequence Modelling and Predictive Analytics


View Details


Measurement of the Reflection Properties of Vehicles for ACC Infrared Sensors


View Details