Browse Publications Technical Papers 2020-01-0150
2020-04-14

A Lumped-Parameter Thermal Model for System Level Simulations of Hybrid Vehicles 2020-01-0150

A lumped-parameter thermal network model, based on the analogy between heat transfer and electric current flow, is presented for hybrid powertrain cooling systems. In order to optimally select the powertrain components that are commercially viable and meet performance, emission, fuel economy and life targets, it is necessary to consider the influence of cooling architecture. Especially in electric and hybrid vehicles, temperature monitoring is important to increase power and torque utilization while preventing thermal damages. Detailed thermal models such as FEA and CFD are considered for component level assessments as they can locate thermal hotspots and identify possible design changes needed. However, for the system level analysis, the detailed numerical models are not suitable due to the requirement of high computation effort. Gray-box modelling technique which is a combination of data driven and physics-based models can be employed to estimate heat rejection from each component and average component temperatures for cooling system design. After preparing the physics based thermal network model, the coefficients are derived based on the temperature readings from test/simulation. Co-simulation of the thermal model with powertrain components can achieve the synergistic optimal solution.
In this paper, a mathematical thermal model of a range extender vehicle cooling system with multiple cooling loops for engine, generator, traction motor, and battery is presented. Thermal inertia of the powertrain components and convective heat transfer to the coolant are defined using equivalent capacitance and resistances, respectively. The energy equations are solved in state space form to calculate component temperatures. This approach reduces simulation setup time and computational effort, approximately 100 times, compared to commercially available 1D simulation tools with an estimated temperature difference of less than 2%. The presented modelling approach is ideal for system level entitlement studies.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Implications of Engine Start-Stop on After-Treatment Operation

2011-01-1243

View Details

TECHNICAL PAPER

Modeling and Optimization of the Consumption of a Three-Wheeled Vehicle

2019-01-0164

View Details

TECHNICAL PAPER

Numerical Modeling of Direct-Oil-Cooled Electric Motor for Effective Thermal Management

2020-01-1387

View Details

X