Browse Publications Technical Papers 2020-01-0219

Parameter Sensitivity Study of Self-piercing Rivet Insertion Process using Finite Element and Machine Learning Method 2020-01-0219

Self-piercing rivets (SPR) are efficient and economical joining methods for lightweight automotive body structure manufacturing. Finite element method (FEM) is a potential effective way to assess joining process while some uncertain parameters can be employed in the simulation based on the prior knowledge, which could lead to significant mismatches between CAE predictions and physical tests. Thus, a sensitivity study on critical CAE parameters is important to guide the high-fidelity modeling of SPR insertion Process. In this paper, a 2-D symmetrical CAE model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are trained using machine learning methods to build the linkage between selected inputs (e.g. material properties, interfacial frictions, clamping force) and outputs (cross-section dimensions). It is found that it is feasible to train surrogate models with high accuracy to replace the time-consuming CAE simulations with a limited sampling volume. Based on trained surrogate models, an extensive sensitivity study is conducted to thoroughly understand the impact of a collection of CAE parameters. This research provides a solid foundation for meta-modelling and the CAE model calibration for SPR insertion process.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.