Browse Publications Technical Papers 2020-01-0263

Minimizing Disturbance Detection Time in Hydraulic Systems 2020-01-0263

In a hydraulic system, parameter variation, contamination, and/or operating conditions can lead to instabilities in the pressure response. The resultant erratic pressure profile produces reduced performance that can lead to hardware damage. Specifically, in a transmission control system, the inability to track pressure commands can result in various types of slip and disturbances to the driveline. Therefore, it is advantageous to identify such pressure events and take remedial actions. The challenge is to detect the condition in the least amount of time while minimizing false alarms. In this study, cross and auto-correlation techniques are evaluated for the detection of pressure disturbances. The performance of the detectors is measured in terms of speed of detection and robustness to: 1) measurement noise, and 2) disturbance parameter uncertainty (frequency and amplitude). The implications in terms of computations and memory utilization of implementing the detectors in real-time embedded systems are also discussed. Both simulation and hardware examples are presented. The hardware experiment is performed in a hydraulic system with low damping composed of a solenoid and a regulator valve connected to an electro-hydraulic actuator. From the simulation and experimental data, it is concluded that the auto-correlation detector yields acceptable performance while reducing algorithm complexity, computations, and memory usage.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 18% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.